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Note 

Absorbing Boundary Condition and Budden Turning Point 
Technique for Electromagnetic Plasma Simulations 

An algorithm of single masking in the Maxwell equations for electromagnetic particle 
simulation is discussed. This absorbing boundary condition is analyzed-in the light of the 
Budden turning point condition. 

1. INTR~OUCTI~N 

Since the spatial extent of plasma particle simulation is necessarily finite and 
bounded, it is quite important to develop techniques which approximately handle the 
boundaries or extrapolate the system. The simplest to implement is the periodic 
boundary condition. Most of the basic particle codes have been implemented this 
way. For electrostatic codes different and more sophisticated boundary condition 
techniques have been developed. One is the so-called capacity matrix technique [ I,23 
-which adjusts the boundary condition by adding the boundary charge in real space. 
This technique can be extended to magnetostatic codes. Another [3] matches the 
vacuum solutions. Yet another [4] constructs a solution from a sum of the 
homogeneous solution and the inhomogeneous solution to Poisson’s equation. An 
extension of this to magnetostatic codes is also possible. 

On the other hand, the electromagnetic boundary treatment is less developed. 
Among the most important conditions beside the periodic one is the absorbing 
boundary condition. One technique [5] originally by Dawson and Langdon utilizes 
the fact that the hyperbolic operator 3: - c2 8: in the Maxwell equation can be 
factorized into the left- and right-ward propagation operators a, f ~3,. This technique 
can be employed only in strictly one dimension. To date the most complete method 
for this problem has been developed by Lindman [6]. Lindman’s method utilizes the 
projection operators (left- and right-ward), which allow oblique angle incidence to be 
taken, and approximates the operators by a numerically stable partial fraction 
expression (a Pade approximation). The technique requires solving several (three or 
six) finite difference equations (in order to restrict the amplitude error to less than 
1%) to determine the “reflection” coefficients. This procedure has to be updated in 
time. The method has been successfully implemented including in ZOHAR; however, 
it presently handles only one directional absorption [7]. 

A naive, approach by extrapolation cannot yield a complete absorption. Consider a 
three-point extrapolation, for example, 

E-,-3E,+3E,-E2=0, 

406 
OOZI-9991/81/080406-01%02.00/0 
Copyright 0 1981 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

(1) 



ELECTROMAGNETIC PLASMA SIMULATIONS 407 

where subscripts indicate the grid position, i.e., 0 means on the boundary and -1 the 
extrapolated grid and so on. Let us express the solution at the nth grid as 

E, = Aeinb + Be- jnb, 

where the coefficient A indicates the amplitude of the outgoing wave and 
incoming one. Substituting Eq. (2) into Eq. (1) yields 

It follows from Eq. (3) that lB 1 = /A 1. We, therefore, conclude that the extra~o~~~i~~ 
cannot make the incoming weve amplitude vanish (\Bl = 0 or \B j < IA I) and that no 
absorbing condition is achieved. Equation (3), however, suggests that extrapolative 
with damping (complex b) may lead to /B 1 Q /A 1, but not j B / = 0. (A more 
sophisticated boundary treatment for absorption or open boundaries by extr~p~l~t~~~ 
is discussed by Orlanski [S].) Another simple approach to absorbing boundary 
conditions is the method of coordinate stretching [9, lo]. I3eyond the physical volume 
where the grid is regular, the grid spacing in the ramp is exponentially stretched so 
that over IO grid points, for example, the actual distance is C,‘p I aid,, where a is a 
ratio of stretching from one grid point to the next neighbor and d, the regular grid 
distance. If this distance is long enough, the information traveling over the distance of 
the ramp might never come back in a practical simulation time span even if the wave 
is reflected at the last edge point. This method, however, also suffers from incomplete 
absorption. The finite difference of the distance in grid space is x(j + 1) -x(j) = 
dd, in the ramp. Consider the wave equation 4” + k2gl = 0: 

(0; + k’)# = [a; -k pax -i- k”]# = 0, (1%) 

where D, is the finite difference operator and p = 2(1 - sr)/(l + a)d,. For p2 < 4k2, 
the stretching adds some effective imaginary part to the wavenumber k. On the ot 
hand, too much stretching pi > 4k2 severely distorts the nature of the wave equation, 
leading to complete reflection We have thus seen that naive or simple techniques 
considered above cannot lead to the completely absorbing boundary condition. In this 
article we present an algorithm of single masking in the Maxwell equations which 
provides a good absorbing boundary condition for eledtromagnetic waves in elec- 
tromagnetic particle codes. 

2. SINGLE MASKING ALGORITHM 

Let us introduce a masking functionf(x). A masking procedure of an electric field, 
for example, is simply 

E”(x) = f(x) E(x), (5) 
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FIG. 1. Masking functionf(x). A slight variation, a linear ramp, is also shown in broken lines. 

where we consider a one dimensional case for simplicity. We adopt the masking 
function as parabolically smoothly matched at the plasma (or real system) boundary: 

f(x) = -d-‘x2 + 2d- ‘x (0 < x < d) 

= 1 (d,<x<L-d) (6) 

= -d-2x2 + 2d-2(L - d)x + 1 + d-2(L - d)2 (L-d<x<L), 

where d is the length of the ramps and L the total system length (see Fig. 1). Note 
that the way f(x) approaches x=x,, (x0: 0 or L) is linear: f(x) cc (x-x0). The 
plasma. is contained in d < x < L -d. We mask either transverse electric fields E, 
and E, or magnetic fields B, and B,, but not both. We call this a single masking 
procedure. For each time step, the current (and charge) generates electromagnetic 
fields. We then mask, say, the transverse electric fields by Eq. (5). When we update 
the transverse electric fields, the old values assume these masked fields. The 
algorithm to calculate the Maxwell equations is otherwise exactly the same as the 
conventional code. Since particles are confined in d < x < L -d, either masked or 
unmasked fields make no difference to the fields which push particles in 
d < x < L - d. If the system is two dimensional, the generalization of the masking 
procedure is straightforward: when the absorbing ramps are located parallel to the y 
axis from x = 0 to x = d and from x = L - d to x = L, the masking is done for the 
transverse electric fields (or magnetic fields) whose directions are perpendicular to the 
normal to the boundary. For three dimensions in Cartesian coordinates, we have not 
found a generalization of the present masking procedure. We tested this algorithm in 
both one and two dimensions with both one and two dimensional absorbing boun- 
daries; the code is numerically stable and produces physically desired results, namely, 
absorption of outgoing waves without any unphysical side effects. When we make 
both the transverse electric fields and magnetic fields (double masking), however, the 
code is numerically unstable: it amplifies a signal entering the masked region. 

Figure 2 shows an electromagnetic pulse launched in a plasma to the left. The 
pulse is such as is described in [ 111 with self-consistent velocity modulation. In this 
test the wave amplitude is very large (relativistic): eE/(moc) N eB/(muc) N 1, where 
m and e are the electron mass and charge, w  is the wave frequency, and c is the speed 
of light. We took c = 9~0, A, the size of the ramps d = lOA, and the total system 
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FIG. 2. Large amplitude electromagnetic pulse propagation into the boundary. (a) The transverse 
electric field E, vs x at t = 4~0;‘. The pulse comes into the boundary x = 0 from right to left. (b) EY vs x 
at t = 14~; I. The pulse has gone through x = 0. The relative scale of E, is the same as in (a). (c) The 
phase space of electrons (p,, x) at t = 50;’ before absorption. (d) The phase space (p,, x) at t = I%$ ’ 
after absorption. (e) The wave electromagnetic energy (real line) and total energy (broken line) in time. 

length L = 2564, where wP is the plasma frequency and 4 the unit grid length. The 
wave is a linearly polarized (EY and B,) electromagnetic pulse of length I = ~c/~~ 
and wavenumber k = 2zfl5A. The transverse electric fields [shown in Figs. 2a and 
as well as the magnetic fields are absorbed. When the pulse goes into the ramp, d 
field amplitude decreases and creates little reflection or transmission. Figure 2e skews 
the wave energy and kinetic energy plotted in time and indicates that these energies 
decrease as the wave is being absorbed and stay constant after the pulse is a~sor~~$~ 
The wave energy of the residual noise after absorption is about 4% of the original In 
this case. The case without a plasma with d= 1OA observed 3% of residual noise 
after transmission of the wavepacket through the ramp. With $= 5d, 20%; while 
with d = 204, 0.4%. When we used a triangular ramp with d = 1OA without a 
plasma, slightly more (4%) residual noise was observed. Two mecbani~ms can be 
responsible for the residual noise. First, our theory below deals with a oonk~n~~rn~ 
while the code calculation is done on a discrete grid. Second, long wavele~gk~ (A > d) 
Fourier components of the pulse do not see the linear dependence j+) CC x - x0 of 
the masking function in the neighborhood of x = x0 ~ Figure 3 shsws two ~~rn~~~$~o~~~ 
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FIG. 3. Two dimensional wave front. The response of ET to a point source E,(t = 0) located at the 
middle is shown by contours of equal amplitudes of E,. The system is L, x L, = 644 x 644 with the 
beginning of ramps indicated by broken lines. Dotted lines indicate negative values. 

propagation of a wave front from a point source located in the middle of the x-y 
plane. The case contains no plasma. The ramps are two dimensional. One can see 
that the wave front approaching a ramp decreases in amplitude and eventually 
vanishes at either x = 0 (and 15,) or y = 0 (and L,,). 

3. THE BUDDEN TURNING POINT AND COMPLETE ABSORPTION 

The singly masked Maxwell equations (electric field masked) in one dimension in 
the ramp area may be written as 

-hB = -c cT,(JE), 
(7) 

-iwE = c a,B. 

If it is two dimensional with the ramps along the x direction, we have 

-imE, = iky cB, , 

-icoE, = -c a,B, , 

-iwE, = -ik, cB, -I c a,B,, 

-iwB, = iky cE, , 

(8) 
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-icoB, = c axuw, 

-icoB, = ik,cE, - c a,(jE,). 

From Eq. (7) we obtain 

(&f + co2,‘c2)E = 0. (9) 

AltemativeIy we obtain from Eq. (8), from example, 

Zf+ 
co2/c2 

1 - k;,‘(co2/c2 - k;) 

If f is linearly proportional to x at x = 0 or x = L, Eq. (9) [or Eq. (IO)] can be 
written with B =fi as 

(a:+-$-)w=o, (111 

where a is a real number and q is an infinitesimal real number. The d~~~re~t~a~ 
equation (11) has a singular turning point at x = 0. The connection formula of 
asymptotic solutions for the singular turning point is [ 12, 13 ] 

k;‘“((A - iB) exp[i(t, -t n/4)] + (A + iB) exp[-i(5, + n/4>]) 

tf lk21-1’2[(A f ~B)exp(ll,j) + 2B ew(--/t2/~19 CW 

where subscripts I and 2 refer to before and behind the turning point x = (Oh 
x = L). { is a normalized coordinate of x. If the wave is coming from ieft the 
turning point, the term proportional to exp[i(& + z/4)] is the incoming wave and the 
other exp[-i(c, + n/4)] is the reflected outgoing wave. When we demand that the 
solution be regular at 1 C&I -+ co, the Budden condition A - iB = 0 for q < 0 is 
required. As is seen from Eq. (12), the Budden condition leads to a vanishing coef- 
ficient of the reflected wave amplitude. Thus we find that the masking fu~~tio~~(~~ 
linearly proportional to x-x0 (x, being either end of the system) results in a 
complete absorption of a plasma wave at x = x0. This is the basic reason for 
absorption of electromagnetic waves by virtue of the above prescribed algo~t~hm: the 
masking function (6) has an appropriate form of (X - x0)-r near x = x0 e When we 
chose f as the one shown by broken lines in Fig. 1, we still observe high ~bso~~t~o~ 
but slightly worse than the case withfas given by Eq. (6). This may be due to lack of 
smooth joining off at x = d or x = L -d. This masking method may be ~hysi~~~ 
looked upon as changing the electric (or magnetic) permeability primarily in a 
reactive way. Earlier works [ 14, 151 have resorted to resistive methods, which 
theoretically cannot absorb 100% of waves over a finite length. On the other ban 
the double masking yields (a,fa,f+ 02/c2)E = 0 instead of Eq. (9) does not possess 
a simple Budden turning point. 

In conclusion, the simple masking algorithm of the ~axw~i~ equation in one or two 
dimensions gives a satisfactory result for absorption of e~ectromag~~ti~ waves. 
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Although the absorption with this method appears worse than that with Ref. [6], the 
present method is simple, flexible, and more versatile. It is easy to implement and 
easy to physically understand. The higher dimensional ramps in higher dimensional 
codes, therefore, can be written with a similar ease in one dimension. If the system is 
cylindrical and the boundary r = rO (r: the radial coordinate) is to be the absorbing 
boundary, it is also possible to apply the present technique to satisfy an approx- 
imately absorbing condition as long as the relation (the unit grid length in the radial 
direction d,) < (the boundary Y& holds. In this case, it is possible to construct a three 
dimensional code (r, 8, z) with ramps in two directions (r, z). 
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